Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0613820160260020253
Journal of Life Science
2016 Volume.26 No. 2 p.253 ~ p.258
Molecular Docking Affinity Comparison of Curcumin and Nano-micelled Curcumin with Natural Sea Salt on Transthyretin
Kim Dong-Chan

Song Pyo
Abstract
In this study, nano-micelled curcumin was produced with natural sea salt with a view to comparing the in silico molecular binding affinity of pure curcumin compound to the active site of transthyretin. Using an optical light microscope and an electron microscope, it was found that the structure of the surface and the cross-section of nano-micelled curcumin was significantly different from natural sea salt. In particular, the crystal structure and nano-components in the nano-micelled curcumin were united, and the layer was more strongly stabilized than untreated salts. In the virtual 3D structure, in silico molecular docking study, the ligand binding affinity of nano-micelled curcumin to the transthyretin active site was found to be higher than that of pure curcumin. In addition, a nano-micelled curcumin formula interacted with more amino acid residues of transthyretin domains. The pharmacophore feature of the nano-micelled curcumin also showed more condensed and constrained features than normal curcumin. These results suggest that nano-micelled curcumin may effectively bind to and stabilize transthyretin, thereby regulating transthyretin-related physiological diseases. Collectively, the nano-micelled curcumin process suggests that normal curcumin can be modified more efficiently into the novel bio-functional chemical formula to stabilize the transthyretin structure. Therefore, the nano-micelled curcumin process can be applied to the field of the regulation of Alzheimer's disease.
KEYWORD
Binding affinity, curcumin, in silico study, nano-micelling, transthyretin
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)